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ABSTRACT

An implicit finite difference version of the 15° parabolic equation
first developed by Claerbout was used to model acoustic wave propagation
in shallow water. The algorithm uses a variable grid spacing in the
depth as well as range direction, resuilting in rapid execution. The
water~sediment interface was simulated by an Epstein layer. An éttempt
to model propagation loss data oﬁ the continental slope and shelf near
Nova Scotia was unsuccesstul because of a lack of adequate environmental
data, as well as deficiencies in the modeling method. However, from
modeling it was found that the sediment properties controlled

propagation loss near the cutoff frequency.
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I. INTRODUCTION

Models for the propagation of underwater sound in shallow water are
complicated by the interaction with the ocean bottom. When the
propagation is range-dependent, the models become even more complex.
One method which has been investigated as a tool for analyzing shallow
water problems is the parabolic equation technique [Lee and Gilbert,
1982). Since the parabolic equation is itself an approximation to the
wave equation, however, special-techniques must be used to model
acoustic interfaces. This thesis is devoted to the development of a
parabolic equation method for modeling propagation loss in a range-
dependent shallow water eﬁvironment. The method is tested by attemptiﬁg

to model actual data recorded in two separate shallow water

" environments.

Explosive signals generated on the continental shelf and slope near
Nova Scotia [Brocher et al., 198l] were analyzed to study acoustic
propagation in a range-dependent shallow water environment. The data
were recorded by ocean bottom sensors at two water depths. The shallow
sensor, at a depth of 67 m, was situated in a region of bottom-limited
sound propagation. The other sensor was on the continental slope in
1301 m of water. Seismic propagation loss measurements were obtained
from the recorded signals [Brocher et al., 1982]. With geoacoustic

models of the water column and sediment structure obtained from various



sources, the parabolic equation was used to model the observed
propagation loss.

The parabolic equation is a useful means of calculating long range
low frequency acoustic propagation when the raypath turning points occur
within the water column [Hanna, 1976; Hanna and Rost, 1981]. This type
of propagation usually occurs in a deep ocean with a well defined sound
channel. 1In shalléwer areas, where bottom interacting paths are
present, the parabolic equation method has been less successful [Lee and
Gilbert, 1982]. As a result, there is a lack of literature describing
parabolic equation modeling of actual shallow water propagation losé
data. The difficulty stems from the discontinuous change in velocity
and density at the bottom of the oceam. Frisk et al. [1981] derived a
parabolic equation technique that accurately modeled the water-sediment
interface for single bottom bounce paths in the North Atlantic, but
this technique is not applicable to multi-bounce paths. This thesis
presents a more general method of treating acoustic interfaces for
calculations based on the parabolic equation. |

Normal mode theory gives an exact solution to the wave equation in
all horizontally stratified media. However, modifying the normal mode
technique to take into account range-dependent variatiom in acoustic
media has met with limited success [Graves et al., 1975]. 1In contrast
with normal modes, the parabolic equation is derived from the wave
equation without recourse to separation of variables. Thus, the
parabolic equation technique is not restricted to the range-independent

environment. For the same reason, mode coupling, a phenomenon

-



associated with sloping bottoms and other two dimemsional media, is
handled by the parabolic equation [Jensen and Kuperman, 1980]. 1In spite
of its difficulty with interfaces, the parabolic equation”s capability
to solve range~dependent problems and its correct modeling of mode
coupling make it a natural candidate for modeling shallow water acoustic
propagation.

McDaniel [1975b] and Lee et al. [1981] devised implicit finite
difference algorithms to solve the parabolic equation. Another method
introduced by Tappert and Hardin combines the use of the Fourier
transférm with a finite-difference operation [Tappert, 1977]. Of these
two techniques, the implicit finite differénce method was selécted for
the modeling reported here because it can be used with a variety of
boundary conditions [DiNapoli and Deavenport, 1979]. Another advantage
of implicit finite differences is faster execution. McDaniel [1975b]
found this method to be significantly faster than that of Tappert and
Hardin. Here, we use an implicit finite difference algorithm to model
acoustic wave propagation. A variable grid spacing is used that permifs

propagation loss models to be computed in less time.



II. DEVELOPMENT OF NUMERICAL MODELING TECHNIQUES

Derivation of the parabolic approximation to the wave equation

\

The wave equation using the Laplacian operator‘72, with velocity ¢,
and the field variable being pressure p is

- P
2tt

c
Inserting a continuous sinusoidal time dependence and changing to

cylindrical coordinates with no azimuthal dependence results in the

Helmholtz or reduced wave equation,

pr;+;pr+Pzz+k2p¥0 > [2]
where k = k(z,r), ¢ = e(z,r), k =w/c, w= 27f, The range, r, is in the
principal direction of propagation and z is depth, positive downward.
Since equation [2] is an elliptic partial differential equation with
second derivatives in both r and z, it is difficult to solve
numerically. Some approximations will be made in order to reduce
equation [2] to a simpler form. In additiom, two changes of variables

will serve to decrease the spatial variation of the computed wavefield,

resulting in less numerical error.



It is usual to normalize for cylimndrical spreading by introducing

= r-l/ZV Iy [3]
which gives
v +v _+ (kz -1 Jv=0 . [4]
rr zZZ — _
2
4y

Next, a far-field approximation can be made by neglecting the term

-l/(4r2) since v/r2 will be much smaller than k2y for ranges on the
order of a few wavelengths or greater. Using a "square-root operator"
and binomial expansion [Claerbout, 1970b] or splitting matrix [McDaniel,
1975b], equation [4] may be reduced to
2
v_miks 2% v . | [5]

2k azz

The solution to this parabolic equation represents an outward traveling
wave field. The loss of the wavefield second derivative with respect to
r forces a restriction on field gradients that can be treated using
this approximation. The equation of the inward traveling wave field has
been decoupled from equation [5]. In the splifting matrix technique, a
matrix equation arises with terms that cause coupling between the
outward and inward traveling waves [Corones, 1975]., These terms are
then explicitly deleted to give equation [5]. Physically, coupling

manifests itself as back-reflection.



A constant "average' wavenumber ko = tn/co is chosen and the

following change of variable is used

v=au exp[ikor] . [6]

The new field variable u changes slowly with range. This result allows
larger step sizes in the numerical implementation of the parabolic
equation. The effect of the substitution is like moving the coordinate
system at the conmstant velocity c, = w/ko [Volk, 1975]. 1In practice, k,
is selected so that 5 is near the average velocity of the acoustic
medium. Inserting equation [6] into equation [5] gives the final
parabolic equation,

i ot

2k az2

which is the basis for the computer model presented in this thesis.

u_ = ( i(k - ko) + [7]
T

The following comments pertain to both equation [7] and the similar
Tappert and Hardin [Tappert, 1977] equation. The parabolic equation [7]
' gives an accurate solution for the propagation of a single normal mode
with wavenumber ko if the waveguide does not induce coupling into other
modes [Fitzgerald, 1975). For modes of propagation with values of
wavenumber k departing from ko (or phase velocity c differing from co)
the wavefield contains increasing errors in the phase velocities and
group velocities of propagating modes [Claerbout, 1970b]. Equation [7]
is thus known as the 15° or narrow bandwidth approximation since it

accurately propagates a conme of rays with a spread of about 15° or 1less.



Dropping the second derivative u_ . leads to greater errors for
nonhorizontal raypaths [Volk, 1975] and also requires that
discontinuities in acoustic properties, as at the ocean-sediment
interface, must be smoothed in order to apply the method [Tappert,
19771.

Fitzgerald [1975] compared parabolic equation solutions with exact
normal mode solutions. For a particular mode of order m with phase
velocity c = w/km, and initial range ro,‘Fitzgerald suggestéd the
following limitation on the maximum distance, r - Tys over which the

parabolic equation is useful at frequency f:

r-r, <« cmzc0 /[ e - c0)2] . [8]
The above equation applies to sound waves in the SOFAR channel and to
RSR (refracted surface reflected) propagation. Typical limits imposed
by [8] are 111 km at 100 Hz to 15,000 km at 10 Hz. For the case of
bottom limited propagation, the required small finite difference step
size and consequently, the long time spent computing, poses a greater
practical restriction on the valid range than equation [8]. 1In general,
the parabolic equation will be accurate to longer ranges as the

frequency f decreases or < approaches o



An implicit finite difference formulation of the parabolic equation

Following McDaniel [1975b], an implicit finite difference algorithm
is constructed for equation [7]. To simplify the notation, equation [7]

can be written as

- 1 :
v, = ;_ur + bu , [9]

where a = i/2k, b = Zk(ko - k), and k = k(z,r) can be complex.

Now, equation [9] is solved numerically. In the discussion that
follows, the subscript m indexes steps in the z direction and the
superscript n indexes steps in the r direction. A grid point has
the coordinates (m,n) and the value of the wavefield at that point is

n .. . . .
uo. As n is incremented, the wavefield is propagated in the T

direction. At each range step n, the algorithm moves through values of

m in the z direction. The first derivative in r is approximated by

n+l
a7 %m
wo= ¢ old_ ) , [10]
d
n
. . . n n+l .
where dn is the range grid spacing from u to u . O(dn) is the

approximate local truncation error at point (m,n). Since a difference



expression such as equation [10] is derived from a Taylor series, the

truncation error results from the neglected terms in the series. The

second derivative in z at uz is approximated by [Gerald, 1970]

T ut - u®
w_ = 2 wl mo o ,om wel oy, [11]
z Hh H h
m m-1

where H = (hm + hm—l)’ h = H/2, and LY is the depth grid spacing from

u tou . When every h is the same (equispaced grid in z), equation

m+l

[11] takes on the common form

n n

n
u -2u +u
o = ml o omlo om?) . [12]
Y44 .
h2

Note that the error has fallen to O(hz).

For the moment, we shall let h be constant. The second difference

operator 65 is defined as follows:

2 n _ n _ n n
Sou = up u o+ ouo g [13]
The actual second derivative and the second differemce operator have the

following relation:

zum 2
u = + 0o(h%) . [14]
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From a Taylor expansion [Mitchell and Griffiths, 1980],

qun

zm _ o R . LpZ ym oy om®) . [15]
ZZ m zZzZzZzZ m

2 1

‘Averaging derivatives between the two range steps n, n+l, gives a form
of the frequently used -Crank-Nicolson equation for solving finite

difference problems:

( n+l fu®) = ( )n+1/2 1 h2( )n+1/2

u u u
m m ZzZ m 1 ZzZzZ m

2h [16]

+ 0(h4+ d2)

where the field value u averaged between the two range steps n, n+l, is

un+l + B
n+l/2 _ m “m
u - .
m 'f'-z———-

The left side of equation [16] could more generally be written as

62
2 (eu®™l e (1= [17]
2 m m

h
In the case of equation [16], 6= 1/2. 5= 1 yields the fully implicit
formula while using = 0 results in the fully explicit formula. For
1/2 < 5 £ 1, this type of differencing scheme is unconditionally stable,
even for the case of complex coefficients [Lee and Papadakis, 1979].
Hood [1978], and Claerbout [1970a] state that using a value of € greater
than 1/2 may improve the accuracy of the propagated wavefield. However,
1/2 is a practical choice since the increased accuracy obtained by

selecting another value is usually marginal when considering the

computer time required to determine the optimum value.
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Substituting the right side of equation [9] as a replacement for

u,. in the right side of equation [16] and also using equation [10]

produces
62 -
A L N Cut L N
2 ) n+l/2
2h a d
2 n+l n 2
2 §Tu -u 26
b Trm my o B Eey™Z [18]
124 b’ a;+1/2 12 v?
+ +1
where (bu)n+1/2 = bi 1 i ' b;uz
m L ]

2
Now we let h = H/2 and use equation [11] to define the Si operator for

a grid with variable spacing;

. [19]
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The final difference equation is obtained by inserting equatiom [19]

into equation [18] and rearranging to get equation [20];

n+l
ml ¥ n L dha 48 h
m m+l m
n+l
n+l ( 1 _ H _ H bm—l ) o+
m1
Hh _, 24dh_ja . 48h )
1
pot
u;11+l ( :i ( i_ + 1 y - 1 _ m +
H hm hm—l an+1/2d 2
m
n+l | n+l
b b
S QLS T Gl D I
24 d h a a 48 h h
mm m-1lm m m1
n
o -1 b
B um+l( - % ) o+
Hh 24 4 hmam+1 8 hm
n
Hb
u:}l ( -1 _ + m1 ) o+
H hm 24 d hm—la 1 48 hm—l
bD
™ H h n ntl/2. 2 24d ha h_ ,a
m m—1 o d m m1"m
b*  b*
e+ ™ .
48 h h
m m1

[20]
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The local truncation error of equation [20] is O(h4 + d2) when the

finite difference grid is equispaced. Equation [20] may be rewritten as

n+l n+l n+l n+l ntl n+l
Am--l Um-1 + n  “m + Cm+1 m+1
n n n n n n

Dm__l v + Em u_ o+ Fm+1 Uy [21]

m runs from 1 to M where M is the total number of grid points in the z
direction. The set of equations represented by equation [21] may be

written as the tridiagonal matrix equation [22];



n+l

n+l

4

ntl _n+l
4 G

[ ]
L]
n+l n+l n+l

m—-&4 Bm—3 Cmr2
n+l n+l

Am—3 m-2

n+l

Am—-2

n+l
m-1

n+l
m-1

n+l

n n n o n n
Dl u1 + E2 u2 + F3 u3
n n n n n n
D2 u2 + E3 u3 + F4 u4
n n n n n
D3 u3 + E4 u4 + F5 u5

L ]

.

L ]

n n n n
Dm—4um—4+ Em—3um—3+ F
Dn n n un

n-3"m-3 m-2 m-2

n n n n

Dm—Zum—Z+ Em.—lum—l+ F

+ TOP

n n
m—2um—2
n n

n-1Ym-1

n n
u +
m m

BOTTOM
-

[22]

9T
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The wave field is propagated along the r direction. For each range
index n, the matrix or equation [22] must be inverted to solve for the

field u at index n+l. The term "implicit finite difference" comes from

the fact that the fieid value un+1 is determined from the field at n by
inverting a matrix rather than from direct multiplication. Special
numerical methods are available to invert tridiagonal matrices such as
the left side of equation [22] [Hormbeck, 1975].

Since m = 1 corresponds to the surface of the ocean, the free

surface (pressure equal to zero) boundary condition is implemented by

setting u? = 0 and the term TOP = 0 for,all-n. A simplified version of
thg Neumann boundary condition given by Lee and Papadakis [1979] is used
at the very bottom of the grid. Note that, in a homogenous medium with
a uniformly spaced -grid and zero pressure at both surface and bottom,
the left hand matrix of equation [22] is symmetric.

The accuracy of the implicit fiﬁite difference algorithm develbped

here was verified by computing the steady state wave field for published

models [Volk, 1975; Jensen and Kuperman, 1986].
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Source modeling

The acoustic data presented in the next chapter consist of many
shots recorded by one receiver. To model such data, the acoustic source
is placed at the location of the original receiver. The principle of
reciprocity states that propagation from the position of the receiver to
each shot is the same as that for shot to receiver. The source used in

the modeling is the Gaussian pulse specified by Tappert [1977];

Source(z,r=0) = P exp( -(z - zs)2 / (2/k§)) . _ [23]
P=pyi’m [ (Y2/kg)
z = source depth
Py = initial pressure
The exact value of the source amplitude P does not matter since absolute

signal levels are not modeled.

Including attenuation in the parabolic equation

Attenuation is introduced by using a complex wavenumber, (k + ia),
where k = w/c. The standing wave exp(ikz) along the z axis becomes,

with attenuation;

e1(k + iadz _ 002 e1kz [24]
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The units of o are nepers (Np) per unit length [Sheriff, 1973]. If A

is the attenuation coefficient in decibels per unit length, then,

a = A = A [25]

20 logloe 8.686

[Clay and Medwin, 1977]. In this thesis, it is assumed that A varies
linearly with frequency [Hamilton, 1972].
Attenuation expressed in terms of the intrinsic Q is [Aki and

Richards, 1980]

exp( "7z ) = exp( -az)

2c¢cQ
1o ce | [26]
Q 3

where ¢ is the phase velocity and f is frequency. For a 25 Hz wave
traveling at 1500 m/s, an attenuation coefficient of 1.5 dB/km 1is

equivalent to a Q of about 100.

Modeling the ocean-sediment interface

The modeling of discontinuities such as the water-sediment
interface requires special attention. Both the density and velocity
contrasts across a boundary must be considered. The use of the
acoustic wave equation [1] requires that the ocean bottom be modeled as
fluid rather than solid material. The assumption of a fluid bottom is

thought to be reasonable for many ocean acoustics problems, except when
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the sediments are thin (Vidmar, 1980). In thin sediments, the P to S-
wave conversions at the sediment-basement interface cause propagation
loss effects that are ignored by a fluid sediment model.

McDaniel and Lee [1982] developed an implicit finite difference
scheme that specifically satisfies acoustic interface boundary
conditions, but the method is not readily adaptable to the case of a
sloping bottom. Interfaces can be approximated by rapid, but
continuous, variations in velocity and density, and that is the method
used here. Replacing the wavenumber k (k = k(r,z)) of equation [7] with
K given below will include the effect of density gradients

[Brekhovskikh, 1980, p. 162; Tappert, 1977].

2 o= k2 o+ 2<%, - 3 don? [27]
2p 4 o

The terms of equation [27] involving density may be neglected if the
changes in density are small over a wavelength. One difficulty in using
equation [27] is that K is very dependent upon the curvature of the
rather arbitrary curve that one chooses to represent the densit&
contrast at an interface. Rather than explicitly varying k through the
use of equation [27], k (or ¢) in the vicinity of an interface will be
specified so that the theoretical reflectivity of the interface region
is close to the Rayleigh reflectivity of the true acoustic interface.
The theory of Brekhovskikh [1980] was implemented to model an
interface by simultaneously considering the density and velocity
contrast across the interface. The interface is approximated by an

Epstein layer (mamed after the Soviet physicist P. Epstein) with
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parameters M, N, and m. The square of the index of refraction, nz(z),

for a horizontal Epstein layer where k = k(z) and ¢ = c(z) is given by

2 2
2 k ¢y ~
2t o= | = | - =
kl c
N exp( m(z - z4)) 4 M exp( m(z - z4))
l - - . [28]
(1 + exp( m(z - zo)) (1 + exp( m(z - zo))2

z is the Epstein layer depth (z measured positive downward), <y is the
constant velocity in the medium well above the layer, and kl =27/ Al .
The constant M depends upon the density contrast at the interface, while
N is determined from the velocity contrast. A plame wave propagates in
the medium above the layer and is both reflected and transmitted. In
the present work, acoustic interfaces are modeled using equation [28].
Setting M =0 'gives
9 N exp( m(z - zo))

n° =1 - s _ [29]
(1 + exp( m(z - zo))

which represents the square of the index of refraction due solely to a
velocity contrast across the interface ( Figure 1), For 1z << zq

2

equation [28] becomes n2 = (c1 [ e)® =1, i.e., c(z) = < above the

Epstein layer. For 1z >> N n? = (c1 / c2)2 =1 -~ N, where <, is the

velocity below the Epstein layer. Thus, N is determined from N = 1 -

(c1 / c2)2 .
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Fig. 1. Left: nz. the index of refraction squared, for the symmetrical
component (equation [30]) of the Epstein layer which describes the
density contrast across an interface (M = 0.4).

Right: n? for the transitional component (equation [29]) of the Epstein
layer which accounts for the velocity contrast across an interface
(¢, = 1490 m/s, c, = 1641 m/s). Parameters common to both figures are
1 2
2 =10 m, and zg = 50 m.
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Now, setting N = 0 in equation [28] results in the equation for a

density contrast only

4 M exp( m(z - z,))

(1 + exp( m(z - zo))2

which is plotted in Figure 1. Note that equation [30] is near unity
except when z is near 2 » where it approaches 1 - M., Morris et al.
[1978] suggested iteratively changing the model velocity-depth function
near the continuous interface until the model reflectivity matches the
Rayleigh reflectivity of the true interface. Here, modeling interfaces
proceeds along similar lines. In this case, M is varied by trial and
error until the Epstein layer reflectivity métches the Rayleigh
reflectivity for the interface. Thus, M is not directly specified from
the known density values above and below an interface.

The term m is related to the Epstein layer thickness and may be
interpreted using equation [30]. The distance between the half maximum
points of equation [28] is £ = 3.5254/m . The parameter S = 2k1/m is
called the relative thickness of the layer. kl =2 /Al, where Al is the
incident wavelength. £ should be smaller thani\l, yet larger than the
computational grid spacing.

Based upon a solution of the reduced wave equation [2],
Brekhovskikh [1980, p. 171] computed the complex reflection coefficient
or Rpp (P-wave incident, P-wave reflected), for the Epstein layer of

equation [28];
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r(y=-1)T -B)T (1 +a -v) [31]

F'(1 =v) T(y=-8)T ()

o, B, and Yy are complex functions of the angle of incidence, wavelength
of incident wave, m, N, and M and are given in Appendix A. The T( )
are complex gamma functions which are numerically evaluated by use of a
seven—term series expansion due to Lanczos [Luke, 1969]. A Foftran
program to compute the complex gamma function is provided in Appendix A.

The Rayleigh reflection coefficient for an acoustic interface where
the subscript 1 indicates a property of the upper medium, 2 refers to

the lower medium, and © is the angle of incidence, is

R = X - ¥ ‘ [32]

PP X + Y

oy ( (e, I ep? - sin®e)/?
where X =__" , and Y = .

3 (1 - sinZe)l/?

The interface reflectivity computed from equation [32] provides the

model to which the Epstein layer reflectivity is matched.
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III. MODELING PROPAGATION ON A CONTINENTAL SLOPE.

Field experiment

The acoustic signals modeled in this portion of the study were
recorded near the edge of the continental shelf off Nova Scotia in June
1975, All signals were received by ocean bottom seismometers, each
equipped with a triaxial set of geophones and a hydrophone. The
instrument package, known as a TOBS (Telemetering Ocean Bottom
Seismometer), has been described by'Sutton et al., [1977]. 1Imn the
succeeding sections, propagation loss modeling results for SUS (sound
underwater signaling) explosive charges and airgun shots will be
discussed. The hydrophone data was considered here since the parabolic
equation calculates the acoustic pressure field for an emvironmental
model. The hydrophone frequency response was flat from about 10 Hz to
40 Hz. Because acoustic pressure and particle velocity are linear1§
related [Clay and Medwin, 1976, p. 59], rates of propagation loss with
rhnge for acoustic signals measured by geophones and hydrophones should
generally be identical.

The SUS charge line was situated downslope from the ocean bottom
seismometer (TOBS 3) on an average slope of 3.5° (Figure 2). At TOBS 3
the water depth was 1301 m, while at the furthest shot, the water depth
was over 2800 m. The shots were 1.1 oz (0.031kg) SUS charge boosters

detonated at a depth of 18 m. Figure 2 shows the location of the SUS



Fig. 2. Location of TOBS 3 and SUS charge line on the Scotian
continental slope. Velocimeter stations 4 and 5 are the sources of

water velocity data for the SUS charge line.
line I-112 and receiver TOBS 1 on the shelf.

Also shown is the airgun

ve
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charge line on the continental slope, as well as the position of two
sound velocity profiles (Figure 3).

The SUS charge arrivals are plotted in Figure 4. Also shown in the
figure is the 6.4 second data window from which the propagation loss
rates were calculated. The signal strength was greatest near 25 Hz,
which corresponded to the bubble pulse frequency. Individual bottom
bounce multiples are easily identified in Figure 4. The highest
discernable group velocity was close to 1500 m/s, indicating that most

of the energy propagated in the water column.

Physical properties of the slope

In general, acoustic modeling requires detailed environmental
input because it is well known that the properties of the uppermost
sediments greatly influence acoustic wave propagation in shallow water.
Unfortunately, little sediment information for this SUS charge line w#s
available. A 1.8 1b (0.82 kg) SUS charge refraction line over the same
location revealed an upper sediment velocity of about 1.7 km/s [Brocher,
1982, in prep.]. Ray tracing [Appendix B] identified a bottom incident
critical angle of about 65°. This result was supported by the
observation of a head wave at close range resulting from incidence at
65.2° [Appendix C]. A bottom water sound speed of 1490 m/s near TOBS 3
and critical angle of 65.2° yielded an upper sediment velocity of

1641 m/s.
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Piston cores up to 13 m iong from the Scotian continental slope
contained muds and clays with a small percentage of sand [Piper, 1974].
The 1641 m/s mentioned above was closer to the compressional velocity in
silt rather than to the lower velocity in clay [Hamilton, 1980]. The
total thickness of the un;onsolidated sediments was not determined. On
the nearby shelf, the unconsolidated sediments were on the order of tens
of meters thick, occasionally thickening to over 200 meters [Parrott et

al., 1980].

Constructing a velocity-depth model

A velocity-depth function was obtained from the velocimeter
information shown in Figure 3 and upper sediment velocities determined
from the seismic refraction data. The water velocity-depth function
used in the geoacoustic model was a range weighted average of data from
sound velocity stations 4 and 5 between 0 and 4 km range, and waé
identical to the station 5 sound velocity profile beyond 4 km.

An ocean bottqm sediment velocity of 1641 m/s was selected, based

on the critical angle estimate. A sonic velocity gradient of 1 s"1 was

chosen for the sediments. This gradient lies within the range of values
reported for silt clays and turbidites [Hamiltom, 1979]. The sediment
thickness was arbitrarily set at 60 m. As a result of using this

sediment velocity and thickness, and a bottom water velocity of 1492 m/s
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(measured about 7 km downslope of TOBS 3), the minimum bottom incidence
angle for long range propagation was 61.3°. That is, rays with a bottom
incidence of 61.3° or more remained in the water column either by
reaching a turning point within the upper 60 m of sediment or by
postcritical reflection at the sediment-—water interface. In the model,
bottom incident rays at angles less than 61.3° were unable to turm back
upwards within the upper 60 m of sediment and were lost from the sound
channel.

A special provision was made for rays refracted from the sound
channel into the bottom of the sediment., Although it might be
preferable to follow Clayton and Engquist [1977}, in which absorbing
boundary conditions were used to allow waves to pass out of the
computational grid without any reflection or backscatter, it is
nontrivial to apply the Clayton and Engquist boundary condition on a
slope. In this case the waves passing through the bottom of the
sediments were simply damped out as was dome by Tappert [1977]. More
specifically, for every other depth grid point below the sediment layef,

the attenuation was doubled while the velocity was remained constant.

This doubling continued until the final attenuation was 2ll times the
attenuation in the sediments. Since the wavefield was damped out by the
time it reached the bottom of the computational grid, the boundary
condition at the very bottom did not matter, as long as it was
physically realizable. The Neuman boundary condition on a slope was

specified,
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A sediment density of 1.6 g/cm3 and an attenuation in the sediments
of 1.5 dB/km at 25 Hz were selected for use in the model from values
computed by Beebe and McDaniel [1980] for the Scotian shelf. Beebe and
McDaniel used sediment grain size data and the Biot—-Stoll sediment model

[Stoll, 1974] to compute the attenuation. These parameters are

approximate, since it was likely that the Scotian shelf sediments had a
higher sand content than those on the Scotian slope. Figure 5

summarizes the emvirommental parameters used in the model.

An Epstein layer for the water—sediment interface

The ability of ray tracing in a medium with a hard bottom to
qualitatively predict variatioms in signal level [Appendix B] suggested
that the water~sediment interface was the principal bottom reflector and
consequently a deeper acoustic basement,.if any, did not significantly
affect the guided wave propagation in the water. Therefore, the only
bottom reflector included in this parabolic equation model was the ocean
bottom. As described earlier, the ocean bottom was simulated by an
Epstein layer. ,

Figure 5 shows the geoacoustic model and the Epstein layer
approximation to the ocean bottom interface. An Epstein layer half~
thickness % = 10 m was chosen. This choice was subject to the

constraints that it be greater than the computational grid size of 2 m
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in the z direction, and less than the average wavelength of 60.8 m
computed from a 25 Hz wave traveling with an average group velocity of
1520 m/s. Once 2 (or small m) was selected, this left the parameter
M, associated with the density contrast, as the only free variable for
matching the Epstein layer reflectivity [32] to the Rayleigh
reflectivity [34]. The Rayleigh and Epstein reflectivities calculated
from the parameters shown ianigure 5 are compared in Figure 6. The
choice M = 0.4 was based upon trial and error matching of the magnitudes
of the respective reflection coefficients. Note that while the
magnitude of the reflection coefficient was reasonably well matched,

there was a considerable mismatch in phase (Figure 6).
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Choosing a computational grid

Brock [1978] described a numerical algorithm for the parabolic
équation which automatically picked the range increment and z increment
as the computation proceeded. However, the algorithm was based upon a
Fourier transform solution of the wave equation and uniform z increment
at each range step and was not directly applicable to this study. In
the present analysis, the computational grid was arbitrarily chosen

using the following criteria:

i) There must be several grid points per wavelength of the

propagating waves.

ii) The grid increment must be smaller than the "wavelength" of the

boundaries as well as of the source.

Both of the above requirements are restatements of the fact that the
grid step size must be small enough to prevent spatial aliasing.

Table 1 lists the specifications for a fixed and variable step size
grid on which the model described in Figure 5 was computed. The results
for both grids are compared in the next section. The relative grid
spacings are illustrated in Figure 7.

It is necessary to specify a small depth increment near the ocean
bottom. In a rectangular grid, this small increment in depth persists

to all ranges. With a sloping bottom, the result is a fine grid where
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Table 1. =~ Finite difference grid spacings for modeling propagation on

the continental slope near Nova Scotia.

Grid Spacing in the Depth Direction

Depth, Grid Spacing
Index meters Az, meters

1 0 2
50 98

51 100 4
320 1176

321 1180 2
1200 2938

Grid Spacing in the Range Direction

Range, Grid spacing
Index meters . Ar, meters

1 0 5
1200 5995
1201 6000 10
2400 17990
2401 18000 20
2919 28360

Az = 2 meters and Ar = 5 meters for the

constant spacing grid.
i



Fig. 7. Above: Constant grid spacing model.

Below: Variable grid spacing. For both grids only about 1 in 40 grid
intersections in both range and depth direction are plotted. Note that
the grid length in the z direction varies with the bathymetry. The
complete grid specifications are listed in Table 1.

LE
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it is not needed and increased com?utational costs, There are
alternatives to the rectangular variable-spacing grid used in this
thesis. If the slope is fairly uniform, as in the present case,
effecting a non~rectangular grid which conforms to the average bottom
slope saves computer time without loss of accuracy. Another
possibility is to change the finite difference grid at a specified
range. At that range, propagation is halted and the wave field is
interpolated onto a new z grid. Computing the wave field would then

proceed until it is necessary to change the grid again.
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The parabolic equation model output

Figure 8 shows the intensity of the acoustic wave field for 25 Hz
generated by the parabolic equation model based on Figure 5 and the
fixed grid spacing detailed in Table 1. A o value of 1520 m/s was
used in the computation. In both the range and depth directions, the
values of the wavefield atvabout 1 in 16 computational grid points were
plotted. At short ranges, the acoustic intemsity was highly oscillatory
due to the propagation of many modes associated with different wave
numbers (or differing phase velocities). With increasing distance,
precritical reflections were quickly damped out, leaving the
postcritical phases indicated by the ray traces of Figures 17-19.

Figure 9 (bottom) is a plot of the wavefield of Figure 8 at 18 m
depth, the same depth as the SUS charge detonation. A least square fit
straight line from 6 to 28 km yielded a propagation loss rate (megative
of the slope) of 0.61 dB/km. This value was automatically corrected for
cylindrical spreading because of the assumption (equation [3]) made
during the derivation of the parabolic approximation. The propagation
loss for the same model computed using the variable grid spacing of
Table I was 0.60 dB/km ( Figure 10). Figure 10 compares the variable and
fixed grid computations at 18 m depth. A close examination of Figure 10
revealed only minor differences, which tended to increase with range,
between the outputs of the two grids. The variable grid spacing was

more economical since computing the same wavefield as in Figure 8 took
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depth from Figure 8. The +0.61 dB/km propagation loss is measured for
ranges from 6 to 28 km.
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only 33 minutes of computing on a Harris 800 computer and required

smaller arrays than the fixed grid calculation which lasted 96 minutes.

Comparison of the observed and predicted propagation loss

The predicted 0.61 dB/km propagation loss at 25 Hz does not match
the observed negative propagation loss of ‘—0.19 dB/km (Figure 9). It
was not known why the signal level increased with range after
normalizing for cylindrical spreading loss. A possible problem was that
the instrumentation compressed the hydrophone signals., so that the
'apparent propagation losé was less than expected for cylindrical
spreading;

Comparing the observed signal levels in Figure 9 with the parabolic
equation predictions in the same figure showed possible common peaks at
6.5, 9.5, 16, and 23 km. In general, the shot spacing was too coarse to
enable resolution of sudden changes in signal level. Significaﬁt
arrivals predicted at 11.5 to 12.5 km and 16.5 to 18.5 km were absent
from the data. Errors in the geoacoustic model and in modeling the
source, as well as the signal compression, may explain the discrepancy

between data and model.
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Iv. MODELING DATA FROM A CONTINENTAL SHELF

Bathymetry

Airgun profiling by an oil company vessel provided signals along a
line (I-112) oblique to TOBS 1 (Figure 2). This data set provided the
opportunity to analyze sound propagation in shallow water over a slope
of less than 0.l degrees. In addition, the data were of good quality
and the shot coverage was dense enough to resolve sharp signal
fluctuations over distances of a few hundred meters. The bathymetry
along the airgun line is plotted in Figure il. Because of the rapidly
increasing Qater depth past 29.5 km only data at ranges less than 29.5
km were used., The water depth varied from about 90 m at 31.6 km to 83 m
at a range of 10.3 km. As Figure 2 indicates, the bathymetry between
the shot locations and TOBS 1 was three dimensiomnal.

To model the bathymetry, the ocean bottom for ranges between 0 and
25.4 km was approximated by a linear increase in depth from 67 to 70 m.
For ranges from 20 km to the nearest shot at_10.3 km, this model
bathymetry was an inaccurate representation of the actual water depth
beneath each shot. The largest error was a difference of 15 m at 10.3
km range. Nonetheless, the bathymetry model provided a good
representation of the water depth for travel paths between the receiver

and most shots. -
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Constructing a velocity—depth model

The unconsolidated sediments in the vicinity of Banquereau Bank
are glacial and littoral deposits [Maclean and King, 1971; Parrott et
al., 1980]. The surficial unit, Sable Island Sand and Gravel, is
generally no more than 20 m thick [Parrot et al., 1980]. Over much of
the shelf the SablevIsland Sand and Gravel is underlain by the Emerald
Silt and a glacial till known as Scotian Shelf Drift. Both of these
units vary in thickness from a few meters to over a hundred meters.
Bedrock is mostly Tertiary sandstones and shales called the Banquereau
Formation [Jansa and Wade, 1974]. ’

The recorded airgun signals are shown in Figure 12. Most of the
eﬁergy in the arrivals was concentrated between 10 and 40 Hz - the
peak frequency response of the hydrophone. A calculation based on the
apparent velocities of the direct and trailing edge of the water wave
arrivals [Houtz, 1980] [Appendix D] yielded an upper sediment velocity
of 1.53 km/s. Measurements by McKay and McKay [1982] using a deep—towéd
device on the adjacent Sable Island Bank found upper sediment velocities
from 1.57 to 1.66 km/s. The sediment velocity used in the model was 1.6
km/s.

Using a Biot—Stoll sediment model [Stoll, 1974], Beebe and McDaniel
[1980] calculated a sediment attenuation of 1.5 dB/km at 25 Hz (Q=100)
for various locations on the Scotian shelf. If the expomnential

attenuation coefficient varies linearly with frequency then the 10 Hz
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Hz signals preceding the water wave result from the interaction of the
water wave with the subbottom. They may be reflected refractions.
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attenuation is 0.6 dB/km. The bottom density of 1.8 g/cm3 shown in
Figure 13 was taken from the silty sand value given by Hamilton [1980].
The acoustic basement on the shelf was modeled using the parameters of

Beebe and McDaniel [1980] which were a velocity of 2.00 km/s and a

density of 2.2 g/cm3.

The acoustic model for propagation on the shelf contained two
interfaces — one at the ocean bottom and onme at the acoustic basement.
The model parameters are illustrated in Figure 13. Also shown in this
figure are Epstein layer models of these interfaces at 25 and 10 Hz.
Based on an analysis of surface wave dispersion [Brocher,y 1982, in
prep.]-, an unconsolidated sediment thickness of 21 m was used.

The 25 Hz reflectivity functions of the Epstein layer equivalenfs
to the ocean bottom and acoustic basemént interfaces of Figure 13 are
plotted in Figure 14. As discussed earlier, the parameters of the
Epstein layer were chosen by a trial and error matching of the Epstein
reflectivity curve to the Rayleigh reflectivity curve calculated from
the velocity and density contrast across the interface. The 10 Hz
Epstein layer reflectivity plots for the same interfaces are shown in
Figure 14 (lower). At 10 Hz it was necessary to use a 10 m Epstein
layer half-thickness compared to 5 m at 25 Hz in order to adequately
represent the acoustic interfaces. Thus, the extent of each 10 Hz
Epstein layer was 20 m which is about the same as the model sediment
thickness. Since the interfaces at the top and bottom of the sediment

were modeled at 10 Hz by Epstein layers which were as thick as the 21 m



Fig. 13. Geoacoustic model for the airgun shot line on the Scotian
shelf. There is an acoustic interface on the ocean bottom and at the
bottom of the sediment. Waves propagating below the subbottom interface
are completely damped out.
Right: Epstein layer approximations to the two interfaces at
25 and 10 Hz.
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sediment layer, the 10 Hz modeling results must be taken with caution.

A sediment velocity gradient was not used because of the thiness
of the unconsolida;ed sediment layer. The water velocity was taken from -
velocimeter data near TOBS 1. For the computations a o value of 1.46
km/s was used. The fi&ite difference grid parameters are given in Table
2. The range increments for computing the parabolic equation wavefield
were the same as for the variable grid spacing of Table 1. Smaller
depth increments were used for this model because of the shallowness of
the water and the need for both bottom and sub-bottom interfaces. As
before, waves propagating below the sediment layer were damped out by
increasing the.attenuation with depth while holding the velocity

constant.

Comparison of data to model at 25 Hz

The signal levels at 25 Hz calcuiated from the 6.4 second data
window of Figure 12 are plotted in Figure 15 (top). The observed
propagation loss rate from 15.4 to 29.5 km was -0.17 dB/km. For ranges
less than 25 km the signal had a higher variance which is probably
caused by the presence of a number of propagating modes at short range.
Because of the shallow water, most of these modes rapidly decayed. Only

the first mode could propagate beyond 25 km.
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Table 2. — Finite difference grid spacings for modeling propagation on
the Scotian shelf.

Grid Spacing in the Depth Direction

Depth, Grid Spacing
Index meters Az, meters
1 0 2
62 61
63 62 0.5
186 123.5
187 124 1
197 134
198 135 2
208 155
209 157 4
234 257

The grid spacing in the range direction is the same as
in Table 1 except that the region where Ar = 20 m is
extended to 31.6 km.
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Fig. 15. Top: Observed 25 Hz airgun signal level versus range found
using the 6.4 second data window shown in Figure 12. The plot is
corrected for cylindrical spreading.

Middle: 25 Hz parabolic equation output at 9 m water depth for the

: acoustic model of Figure 13.
Bottom: Parabolic equation output for same model as used above with the
addition of a 200 m thick sediment trough situated between 7 and 22 km
range.
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It was believed that the airgun operated at 9 m water depth. Using
the model of Figure 13, the acoustic wave field at 9 m depth was
calculated for 25 Hz (Figure 15, middle). The result of the calculation
showed fluctuating signal levels near the source which indicated the
presence of several propagating modes. The smoothness of the curve
beyond a range of 10 km suggested that only ome mode existed in this
region./ The calculated propagation loss between 15.4 and 29.5 km was
0.20 dB/km.

In both the observed data and the computed signal levels there was
a transition from multimode to single mode propagation. However, the
range where this transition occurred was different in both cases. This
range mismatch was probably due to the use of an attenuating sub-bottom,
a point which is discusse& later.

In an effort to better fit the measured propagation loss rate, a
200 m thick sediment trough was added to the model between 7 and 22 km.
A sediment trough could represent a model for a sediment filled
Pleistocene valley or stream bed [King and MacLean, 1970]. The computéd
propagation loss for this model is shown in Figure 15 (bottom). The
trough extended the range of multimode propagation as shown by the
wiggliness at the left end of the trough, but did not provide a better

fit to the data.

A sediment velocity gradient of 1 xs-l added to the above sediment
trough model produced an insignificant change in the propagation loss

results. The finding that a velocity gradient in the sediments did not
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influence the propagation loss indicated that most of the energy at 25

Hz was trapped in the water column.

Comparison of data to model at 10 Hz

The 10 Hz spectrum level versus range is plotted in Figure 16
(top). Values for ranges between 15.4 and 27.5 km are displayed and the
propagation loss was 0.14 dB/km compared to the -0.17 dB/km loss found
at 25 Hz. At 10 Hz there was less variation in signal level from shot
to shot than at 25 Hz.

Figure 16 also shows the calculated wavefield at 10 Hz and at a
depth of 9 m in the water column plotted versus range. The calculated
propagation loss between 15.4 and 27.5 km of -0.43 dB/km does not fit
the data. The possibility that this propagation loss rate is controlled
by the sediment column is suggested by the observation that at 10 Hz,
signals propagating at 1460 m/s have a wavelength of 146 m which is
twice the average water depth of about 70 m and greater than the
combined water and sediment thickness of 91 m. In this case, the first
mode was slightly below the cutoff frequency and the calculated signal
level rapidly decayed within the first 10 km (Figure 16). Note that for
a 70 m water layer with velocity 1452 m/s over a sediment half-space
with velocity 1600 m/s, the cutoff frequency is 12.3 Hz. The presence
of the 2000 m/s acoustic basement lowers this cutoff frequency slightly.

The model sediment layer was thin in comparison with the acoustic
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Fig. 16. From top to bottom:

10 Hz signal levels found using a 6.4 second window and corrected for
cylindrical spreading;

Parabolic equation output for the geoacoustic model shown in Figure 13

at 10 Hz;
10 Hz output for above model with 200 m thick sediment trough from 7 to

22 km range;

10 Hz output for sediment trough model with 1 s_1 velocity gradient.
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wavelength, and possible shear conversions at the sediment-basement
interface [Vidmar, 1980] which cause additional propagation loss were
neglected by the parabolic equation used here.

Adding the 200 m thick sediment trough between 7 and 22 km gave a

propagation loss of -0,15 dB/km (Figure 16). Placing a 1 s_1 gradient
in the sediment trough model resulted in a realistic propagation loss of
0.12 dB/km (Figure 16, bottom) but the variance in the model signal
level was much greater than that of the data. It was obvious that, as a
consequence of the shallowness of the water with respect to the 10 Hz

wavelength, the sediments controlled the propagation loss rate.
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V. DISCUSSION ON SOURCES OF MODELING ERROR

In the acoustic modeling presented here, several approximations
were made which deserve attention as likely sources of error. The
parabolic equation is limited to treating a narrow band of propagating
rays. The Epstein layer is an approximation to the acoustic interface
and causes a phase error in the reflected wavefield. Applying the
Gaussian source pulse at an interface may cause errors. The use of an
attenuating sub-bottom is not physically real and may affect propagation
loss. These four factors are discussed below.

Earlier it was mentioned that equation [7] is known as the 15° or
narrow bandwidth approximation. In the model for .propagation on the
Nova Scotian continental slope, the critical angle at the water—sediment
interface was 65.2°. Coincidently, the same Angle was obtained for
critical incidence at the water—~sediment interface in the Scotian shelf
model. Since most of the propagating modes of the computed wave fields
were associated with postcritical bottom reflections, the incidence
angles associated with those modes ranged from 65° to 90°. This spread
of 25° was thus greater then the 15° limit of equation [7]. In general,
the error arising from using the 15° approximation to propagate a wider
range of incident rays or corresponding phase velocities causes a shift
in the positions of convergence zones [Brock et al., 1977].

The phases of the Epstein layer and Rayleigh reflection
coefficients were quite different, as is shown in Figures 6 and l4.

This phase difference was unavoidable since the Epstein layer "reflects"
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rays by forcing them to turn. Since the wave field computed from
equation [7] is a standing wave interference pattern, the incorrect
phase caused by using Epstein layers can be expected to cause
significant shifts in the position of local field values. Choosing the
Epstein layer parameters so that the magnitude of the Epstein layer
reflection coefficient matched that of the Rayleigh interface, however,
ensured that the energy trapped in the water layer was identical to that
when acoustic interfaces are included in the modeling. Thus, one would
expect the propagation loss rates found over long distances to be
similar for models employing Epétein layers and models using true
interfaces.

There is also some inaccuracy introduced by placing the Gaussian
pulse on the water-sediment interface. The Gaussian source pulse [23]
was selected from a variety of possible source functions because it is
simple to compute. An alternative would be to use as initial data the
normal mode wavefield at a short range from the source [Wood and
Papadakis, 1980]. It seems probable that the symmetric source function
[23] did not accurately model the source on the interface. The water-
sediment interface itself was modeled as a smoothly varying transition
zone, Placing a Gaussian pulse on such a transition regiom should at
least be more physically reasonable than locating the pulse on a
discontinuity.

The use of an attenuating sub-bottom causes higher order modes
associated with rays at precritical bottom incidence to be prematurely

damped out. This result may be seen in Figure 15 by comparing the
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observed and predicted 25 Hz signal levels. The higher order modes in
the observed signal level are present out to about 25 km. In the
predicted signal levels, the higher order modes are not visible beyond
12 km. In this example, improper modeling of the bathymetry and
sediment properties may also be responsible for the premature decay of
the higher modes. However, it is likely that, at close ranges, use of
an attenuating sub-bottom causes erromeous propagation loss when

precritical bottom reflections are significant.
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VI. SUMMARY

An implicit finite difference algorithm for the parabolic equation
based on a variable grid spacing in the depth as well as range direction
was developed. The algorithm, when implemented with a variable grid
spacing, gave almost the same results as a constant fine grid spacing in
one third as much computer time.

Acoustic interfaces, characterized by a velocity and a demnsity
contrast, were modeled by using Epstein layers. The Epstein layer
parameters were selected by fitting the amﬁlitude of the theoretical
Epétéin layer reflectivity [Brekhovshkikh, 1980] to the acoustic
Rayleigh reflectivity. The use of Epstein layers provided an interface-
like aspect to the acoustic models. It was necessary, however, to
specify Epstein layer thicknesses roughly proportional to the acoustic
wavelength, making the Epstein layer difficult to use for low frequency
modeling of interfaces separated by a thin layer.

Propagation loss curves were computed using this algorithm for shot
lines on the Scotian slope and shelf. The modeling results were
compared with data recorded by hydrophones positioned on the ocean
bottom. On the Scotian slope, the observed -0.19 dB/km propagation loss
at 25 Hz could not be replicated. The observed negative propagation
loss may be partly caused by compression of the signals by the recording

instrumentation.
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On the Scotian shelf, in water about 70 m deep, the modeling could
not explain the observed -0.17 dB/km propagation loss at 25 Hz. At this
frequency, the sub~bottom acoustic parameters did not greatly effect the
modeled propagation loss. This result was in agreement with the
observation that 25 Hz was well above the cutoff frequency for normal
mode propagation in the water column. On the other hand, 10 Hz was
close to the cutoff frequency and the observed 0.14 dB/km propagation
loss at-10 Hz was simulated by adjusting the properties of the
sediments. Seismic reflection profiling on the slope and shelf would be
helpful for determining the depth to acoustic basement and extent of

lateral sediment changes needed to improve the geoacoustic models.



66

APPENDI.X A. EPSTEIN LAYER REFLECTIVITY FUNCTION

The parameters of equation [3l] are here described in detail.

§ = 2kl/m is fhe relative thickness of the Epstein layer. 9 is the
angle of incidence of the plane wave upon the Epstein layer. M is the
constant of equation [28] which is related to the density contrast
across the interface for which the Epstein layer is an approximation.
N is the constant that is determined by the velocity contrast across the
interface. @ , B8, and Y of equation [31] are specified by the following

equations:

A = Rel i(l - 452M)1/2]

2
B = Iml[ i(l - 452M)1/2]
2

2 1/2

+ A+ (i8/2)[cos® - (cos”" 8- N) ] + iB

1/2

+ A+ (iS8/2)[cos € + (cosze - N) ] + iB

™
n
L 1 I Y

+ iS cos®

Brekhovskikh [1980] derived the above expressions by relating the
solution of the reduced wave equation [2] to the solution of the

hypergeometric equation.
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The Fortran program given on the next page computes [ (z+l) for
Re(z) > -11/2. For values of z outside this range, continuation
formulas may be used. Here a seven term series expansion due to Lanczos
is implemented (Luke, 1980). A typical error for ln T (z) is on the

order of 107, Ifz=x+ iy, then e” = e*(cos(y) + isin(y)). This

relation may be used if complex exponentiation is not provided on the

s
user s computer.
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FUNCTION CGAM(CZ)
CGAM IS THE GAMMA FUNCTION FOR COMPLEX ARGUMENT Z
FOR INPUT COMPLEX Z, OUTPUT IS GAMMA(Z + 1).

REQUIRE REAL(Z) > -11/2

HOWEVER, IT IS STRONGLY RECOMMENDED THAT YOU USE CONTINUATION
FORMULAS FOR REAL(Z) < 0 BECAUSE OF THE SINGULARITES IN
GAMMA(Z+1) WHEN Z = -1, -2, -3, ETC.

THIS IS THE LANCZOS EXPANSION FROM
Y.L. LUKE, THE SPECIAL FUNCTIONS AND THEIR APPLICATIONS,
ACADEMIC, N.Y., 1969, VOL. 1 & 2.
IMPLICIT COMPLEX(C)
DIMENSION G(0:6)
THERE ARE (NORD + 1) G CONSTANTS

NORD = 6
G(0) = 41.624436916439068
G(1) = -51.224241022374774
G(2) = 11.338755813488977
G(3) = -0.747732687772388
G(4) = 0.008782877493061
G(5) = -0.000001899030264
G(6) =. 0,000000001946335

PI = 3,141592654
E = 2.718281828
PI2SQ = SQRT(2.0 * PI)
Cll =cz + 11.0 / 2.0

C2 = CZ + 0.5

C2 = Cll *% C2 * PI2SQ

C2 =C2 * E %+ (Cll * (-1.0))
CH = (1.0,0.0)

CsUM = (0.0,0.0)
FOR I = 0, NORD
CSUM = CSUM + CH * G(I)

. RIX =1

. RIX1=1I+1

. CH =CH * (CZ - RIX) / (Cz + RIX1)
END FOR

CGAM = C2 * CSUM

RETURN

END
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APPENDIX B. RAYTRACING ON THE CONTINENTAL SLOPE

This appendix describes raytrace modeling of acoustic signals
recorded on the continental slope off Nova Scotia. The modeled signals
are the same as those modeled using the parabolic equation as described
in Chapter 2. The SUS cha}ge line was downslope frdm the telemetering
ocean bottom seismometer (TOBS 3) on an average slope of 3.5°. At TOBS
3 the water depth was 1301 m, while at the furthest shot the water depth
was over 2800 m. The shots were 1.1 oz (0.031 kg) SUS charges detonated
at a depth of 18 m. Figure 2 shows the location of the SUS charge line
on the continental slope, as well as the position of two sonic velocity
versus depth profiles of the water column (Figure 3).

For this shot line the water was sufficiently deep to allow
individual bottom bounce multiple arrivals of the water wave to be
readily identified. Yet, the ocean was shallow enough so that beyond a
few km range, the most energetic arrivals were all reflections off the
bottom. In addition, the average 3.5° slope (local slopes were as mucﬁ
as 18°) caused the angle of incidence of a downslope—propagating ray to
increase upon each bottom bounce; the incidence angle of an upslope-
propagating ray would have decreased.

Ray tracing is a useful tool for this problém because it enables
the observer to visualize actual wave propagation effects. Water wave
arrivals recorded by TOBS 3 and the ray traces for one, two, and three
bottom mulcriple arrivals are pictured in Figures 17 to 19. 1In these ray

trace figures, the rays emanate from the position of TOBS 3 in 0.5
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degree increments. A composite of sonic velocity stations 4 and 5 is
used for the water velocity versus depth function. The bottom reflects
all incident rays and is slightly smoothed to eliminate errant rays
caused by irregularities in the bathymetry profile.

For single bottom bounce water wave arrivals (Figure 17), the
shape or the ocean bottom is the most significant factor affecting
propagation loss. A convex bottom near 9 km creates a small shadow zone
at 15 km range while a convex bottom near 14 km results in a shadow zone
from 24 to 30 km (up to the limit of the plot). A concave bottom near
13 km range produces a region of high intensity between 17 and 18 km
which shows up in the data between 16 and 17 km range. This discrepancy
is probably caused by slight errors in modeling the bathymetry and water
column velocity. Another possible source of error is neglect of
azimuthal dependence in the raytracing.

The two and three bottom bounce multiple arrivals indicated in
Figures 18 and 19 largely consist of postcritical reflections since
suffering more than one precritical reflection greatly reduces tﬁé
amplitude of the arrival. Beyond 13 km surface range, the increased
amplitude of the second multipie (Figure 18 ) is due to the second bounce
reaching or exceeding critical incidence of about 65° (incident angles
are measured from the normal to the bottom), starting from around 9;5 km
range on the bottom. For this discussion, bottom bounces are counted
from the first bounce downslope of the ray source on the bottom.
Between 13 and 18 km range, the second bounce arrival is additionally

intensified by bottom focusing.
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Careful examination reveals some increase in the amplitude of the
third mulciple arrivals (Figure 19) between 14 and 16 km, due to bottom
focusing. However, only past 22 km do the third multiples become
significant, a consequence of their becoming criticailly incident at
these ranges. The family of post critical third bounce arrivals after

22 km originates from the second multiples seen between 13 and 18 km.
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APPENDIX C. HEAD WAVE

A phase reversal'at short range was observed in the onset of
explosive signals received by TOBS 3 from large 1.8 1b (0.82 kg) SUS
charges. The large SUS charge line was along the small SUS charge line
of Figure 2 and extended upslope from the receiver. The shots were set
off at 18 m depth and were recorded-in water 1301 m deep.

Inspection of the first breaks in the first arrivals reveals a
phase reversal (Figure 20) at shots with ranges of 2.0 and 3.8 km
upslope and downslope from TOBS 3, respectively. .It is probable that
the phase change indicates the onset of a critically incident head wave.
The developments below assume that the upslope‘and downslope éhase
reversals mark rays that impinge upon the bottom at the same incidence
angle (Figure 21). This inci&ence angle is the critical angle, from
which the sediment velocity may be computed if the water velocity is
known.

By assuming a direct water borne path from a shot near the surfacé
to the receiver on the ocean bottom, the ray parameter corresponding to
the travel time of a first arrival may be calculated. The water
velocity structure on the left side of Figure 3, extrapolated linearly
down to 1301 m, is used for this calculation. For the water velocity
structure and the shot ranges under consideration, it happens that each
travel time corresponds to a unique ray parameter. The ray parameter is

computed from the following arrangement of a well known formula;
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Below: Shots originating downslope from TOBS 3
The triangles denote the phase reversal in the first break.
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SOUTH NORTH

¢

a =57.9°
B =72.5°
2¢ =B ~-a, ¢ =7.3°
a+¢p = -¢=65.2°

Fig. 2l. Top: Geometry for ray paths occurring at 65.2° critical
incidence.

Bottom: Bottom angles @ and B are computed from their corresponding ray

parameters and the bottom water velocity, 1488 m/s. ¢ is the bottom

slope in the vicinity of TOBS 3 and may be computed from ¢ and B.

Using ¢ and @ or B , the 65.2° incident angle with respect to the bottom

is determined.
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D 2
T - n dz = 0 , [33]
20, 2 2,1/2
n® -9

where zg = shot depth, D = bottom depth, T = travel time, N = 1l/c(z),

and p = p(T) = ray parameter. Equation [33] may be solved for p by
providing an initial guess for p and using the secant method or other
root finding technique. The integrand is numerically integrated.

Once the ray parameter is found for the rays corresponding to the
upslope and the downslope phase reversal, the ocean bottom slope and
bottom incident angle associated with the phase reversal may be
computed, as shown in Figure 21. This bottom incident angle is the
critical angle.

The nature of the phase reversal is investigated further by
examining the first break.amplitudes. The ray p;rameter for each shot
is obtained using equation [33]. From each ray parameter, the bottom
incident angle and horizontal range are calculated. First break
amplitudes for shots downslope from the receiver versus bottom incident
angle and horizontal range are plotted in Figure 22. The expecteﬁ
amplitude decay due to spherical spreading is also indicated in the
figure. The failure of shots closer than 1600 m to obey spherical
spreading suggests that the near shot first breaks saturated the
recording amplifier. The phase reversal occurs abruptly just past 65°
bottom incidence, signaling the onset of the heaa wave. Beyond 65°, the
first arrival is no longer the direct wave in the water so that the
computed incident angles and ranges no longer apply. This fact is

illustrated in the lower part of Figure 22. Shown is the difference
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between horizontal ranges based on equation [33] ray parameters and
horizontal ranges obtained from shipboard navigation. The sudden drop
off beyond 65° incidence indicates that the computed ray parameters no
longer describe the first arrival, which is no loﬁger a water borne
direct wave. The same results are obtained by looking at the first
break amplitudes for shots upslope of the TOBS (Figure 23). 1In this
case, the head wave onset is indicated by a sharp upward swing of the

range difference plot. \
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APPENDIX D, SEDIMENT VELOCITY FROM APPARENT VELOCITIES

The apparent velocities measured from the leading and trailing
edges of the water wave, as shown in Figure 12, may be used to estimate
the ocean bottom sediment velocity. The method for doing so was
developed by Sutton and Maynard [1971) and described by Houtz [1980].
The technique is recapitulated here.

Consider a single shot. Let v, be the water velocity and v, be the
bottom velocity. Let th be the travel time of the direct wave which is
at the leading edge of the water wave. The travel time of the back end

of the water wave is t.. This arrival corresponds to the ray traveling

at critical incidence 9c with respect to the bottom (Figure 24). It is
assumed that the bottom sediment velocity is greater than the water

velocity. The apparent velocity of the terminal arrival is vg = thD/tc.

From Figure 24 the length AB = v t_, and AB = v_t sin® . TUsing the
w D w c c

above relations, one may write:

tD v
sin6 = __=_8 [34]
t v
c w
From Snell”s law,
Vv
v = . [35]
g
sin ©
c
Replacing sin 8, yields the result:
_ 2
Vo=V, / vg . [36]
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From Figure 12 v = 1.42 km/s and Ve < 1.32 km/s. Using equation [36],
v, = 1.53 km/s. This velocity is a bit lower than Scotian shelf values
of 1.57 to 1.66 km/s measured by McKay and McKay [1982}. The slope
correction given by Houtz [1980) is negligible for -this example. One
source of error may be the assumption of constant water velocity. The
near surface gradient in the water velocity versus depth shown in Figure
13 hastens the arrival of the critically reflected wave so that sin Gc
of equation [34] is inflated. The increased sin 6 produces a lower

calculated sediment velocity v, 38 shown in equation [35].
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Fig. 24. Raypath at critical incidence Gc. The last arrival in the
water wave travels at critical incidence. The total distance traveled
is the hypotenuse of the large triangle, or thc (see text).
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